
Intro to Physical Side Channel Attacks

Thomas Eisenbarth

15.06.2018

Summer School on Real-World Crypto & Privacy
Šibenik, Croatia

Outline

• Why physical attacks matter

• Implementation attacks and power analysis

• Leakage Detection

• Side Channel Countermeasures

2

Train Theft of MoD Laptop
Train theft of MoD laptop with fighter secrets alarmed Pentagon:
[…] a laptop was stolen containing secrets of the biggest military procurement
project ever launched […]. It held details of progress on the development of the United States'

supersonic joint strike fighter. […]

A petty thief stole the laptop from a British military officer at Paddington station in London last May.

It had been left on the luggage rack on a train. […]

The computer is believed to have passed through several hands before it was
returned to the Ministry of Defence. The thief was caught and later convicted. […]

The Guardian, Tuesday 6 February 2001:

3

Solution: Hard Disk Encryption

• Hard Disk Encryption available on all major OSs
• Enabled by default on mobile phones
• Solves Problem: Good password sufficient for secure

storage

plaintext ciphertext

y*a@1^A:5#....

key

4

Problem: Physical Attacks

Problem: your key is stored in memory (DRAM)

This happens if you cut power:

5

Cold Boot Attacks

Lunchtime Attack:

• data will persist for
minutes if chips are cooled

• Keys easily recovered from
memory content

Physical Access is needed

Halderman; Schoen; Heninger; Clarkson; Paul; Calandrino; Feldman; Appelbaum; Felten: Lest We
Remember: Cold Boot Attacks on Encryption Keys, USENIX Security 2008 6

Implementation Attacks

Implementation Attacks

• Critical information leaked through side channels

• Adversary can extract critical secrets (keys etc.)

• Usually require physical access (proximity)

plaintext

ciphertext

Leakage
Execution time

Memory remanescence

Power and EM

Faults

8

Physical Attacks

• Invasive Attacks

– Probing Attacks

• Semi-invasive

– Fault Injection Attacks

• Non-invasive

– Timing Attacks (cf. Tuesday talk)

– Physical side channel attacks:

– Power, EM, Sound, Light

9

Fault Attacks

• Very powerful and not that difficult to
implement

• Approach:
– Induce faults during crypto computation

(e.g. power or clock glitch, shine laser, EM etc.)
– Use corrupt data output to recover keys

• Countermeasures:
– Strong error detection through coding or repeat

computation
– Tamper resilient hardware

• Example: single faulty output of RSA-CRT can
reveal entire RSA key [BDL97,Len96]

10[BDL97] Boneh, DeMillo, Lipton. "On the importance of checking cryptographic protocols for faults. CRYPTO 97
[Len96] Lenstra AK. Memo on RSA signature generation in the presence of faults. 1996.

Faulty
output

Types of fault attacks

• Differential Fault Analysis [BS96]:
– Analyze difference between correct and

faulty output: knowledge about fault
position and/or value reveals (partial) key

• Simple fault analysis:
– only faulty output given; additional

statistical knowledge about fault behavior
needed.

– Fault sensitivity analysis [LSG10]: only
certain internal states can be faulted:
faulty behavior→that state occured

11
[BS96] Biham, Shamir. Differential fault analysis of secret key cryptosystems, CRYPTO 96
[LSG+10] Li, Sakiyama, Gomisawa, Fukunaga, Takahashi, and Ohta, Fault sensitivity analysis, CHES 2010

output

Faulty
output

Information Leakage through Power

• Key Observation: Power Consumption of ICs
depends on processed data

• First exploited to recover cryptographic keys
from smart cards in 1999

0 20 40 60 80 100 120 140 160 180 200

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time
C

o
rr

e
la

ti
o
n

right key

wrong keys

12

Power Consumption of CMOS

• Information stored as voltage levels –Hi =1/Lo=0

• Signal transitions dissipate power:

𝑃 = 𝛼 ∙ 𝐶 ∙ 𝑉2 ∙ 𝑓
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

+ 𝑉 ∙ 𝐼𝑙𝑒𝑎𝑘
𝑠𝑡𝑎𝑡𝑖𝑐

Activity factor 𝛼 is determined by data

→ Power Consumption / EM emanation
depends on processed data!

13

A Simple Power Analysis Attack

1. Find a suited predictable
intermediate value in the
cipher

2. Perform power measurements
and post processing

3. Recover Secret Key

Modular Exponentiation for RSA

Basic principle: Scan exponent bits from left to right and
square/multiply operand accordingly

Algorithm: Square-and-Multiply

Input: Exponent H, base element x, Modulus N

Output: y = xH mod N

1. Determine binary representation H = (ht, ht-1, ..., h0)2

2. FOR i = t-1 TO 0

3. y = y2 mod N

4. IF hi = 1 THEN

5. y = y * x mod N

6. RETURN y

Execution of multiply
depends on secret

→ Exponent is secret key

15

A Simple Power Analysis Attack

1. Find a suited predictable
intermediate value in the
cipher

2. Perform power measurements
and post processing

3. Recover Secret Key

Measurement setup

• Oscilloscope measures
power or EM from target
crypto device

• Usually PC to control setup

17

SPA Measurement Setup

• Voltage drop over shunt resistor ~ power

Target

shunt
scope

𝑉𝐷𝐷

𝑉𝑆𝑆

𝑽

18

A Simple Power Analysis Attack

1. Find a suited predictable
intermediate value in the
cipher

2. Perform power measurements
and post processing

3. Recover Secret Key

RSA Power trace

Where are the squares, where are the multiplies?

20

Detecting key bits

• After zoom-in, squares and multiplies are
easily distinguishable

21

Differential Power Analysis

• Key idea: use statistical information from many
observations

• Recall Password Timing Example:

𝑡𝑖𝑚𝑒 = 𝑓 𝑖𝑛𝑝𝑢𝑡, 𝑠𝑒𝑐𝑟𝑒𝑡

• Leakage exists, how to exploit it?

- some variations may be predicted

- variations may be tiny,

- only small parts of implementation need be
predicted

22

AES: predicted value

S S S S S S S

𝑦1

plaintext
Add_Key

Sub_Bytes

Predicted state: 𝑦1 = 𝑆(𝑥1 ⊕𝑘𝑒𝑦1)

Single-bit DPA: Predict only one bit of state:

ℎ = LSB(𝑦1)

23

DPA on AES on Controller

Assumption: Controller leaks HW(𝒚𝟏) during
S-box lookup

1. Measure 𝑃𝑖(𝑡)and store all 𝑃𝑖 𝑡 , 𝑖𝑛𝑖
2. Sort traces based on ℎ = LSB(𝑦1) and average

𝜇0 = 𝑃𝑖(𝑡)|(ℎ = 0) 𝜇1 = 𝑃𝑖(𝑡)| (ℎ = 1)

3. Compute difference of means:

∆ = 𝝁𝟏 − 𝝁𝟎
24

Average of 1000 HWs

25

Sorted Traces (based on ℎ)

26

Result of the Distance of Means Attack

27

Side Channel Attacks Classification

• Non-Profiled Attacks
– Need some knowledge of implementation and (approximate)

leakage model (or build it on the fly)
• Difference of Means (Classic DPA)
• Correlation Power Analysis (CPA)
• Mutual Information Attack (MIA)
• Collision Based Attacks

• Profiled Attacks:
– Two-step process: 1) profile leakage, 2) use learned leakage

model to extract information
– Usually more effective in exploitation due to better modeling

• Template Attack
• Linear Regression

28

Single-bit DPA

• Simple yet effective attack:

– Very generic leakage model: only needs slight
difference for one bit

– Many more powerful, but less generic attacks exist

• ∆≈ 0 for wrong key and wrong time points

• Reveals both correct key AND time point of
leakage

0 20 40 60 80 100 120 140 160 180 200

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

Co
rre

lat
ion

right key

wrong keys

29

Leakage Detection

30

Methods for Leakage Detection?

Goal: Simple test to detect any leakage in implementation
• Profiled vs. Non-profiled?

– MIA: strong but slow convergence; Depends strongly on
parameter choices: how to describe and sample pdfs?

– Templates: very powerful, but costly to build and also
model-dependent: Which variable to template?

– Good choices for leakage quantification

• CCA (Correlation Collision Attack)[MME10]:
– Basically univariate self-profiling attack
– Already widely used as leakage detection tool
– Disadvantage: does not work for single-bit leakages

• Above proposed as attacks. More generic solution?

[MME10] Moradi, Mischke, Eisenbarth Correlation-enhanced power analysis collision attack—CHES 2010
31

Leakage Detection: TVLA Test [GJJR11]

• Builds on T-Test: test to check matching means
for two distributions

• T-Test returns confidence for non-leakage
hypothesis

• Non-profiled, DPA derived

• Originally proposed for automated test suite
– Given cipher-specific test vectors, check

implementation correctness and ensure observed
leakage traces do not break test

• Comes in two (three) flavors

32[GJJR11] Goodwill, Jun, Jaffe, Rohatgi: “A testing methodology for side-channel resistance validation”, NIST
Workshop, 2011.

Welch’s T-Test

• Checks if two normal distributions 𝑋, 𝑌 have
the same mean

• With sample mean ҧ𝑥 and variance 𝑠𝑥
2, 𝑡 is

given as: 𝑡 = ഥ𝑥 −ഥ𝑦

𝑠𝑥
2

𝑛𝑥
+
𝑠𝑦
2

𝑛𝑦

,

• If 𝑋, 𝑌 have the same mean, then t follows a
student distribution and thus |𝑡|is small:
Pr(|𝑡𝑑𝑓=𝑣>1000| > 4.5) < 0.00001

• Hence, if no leakage exists, the probability of
𝑡 > 4.5 is sufficiently small

33

Fixed vs Random Test
Non-Specific T-Test

Two sets of measurements:
• Fixed: external variables (plaintext, key) are fixed
• Random: external variable (e.g. plaintext) is random

(others, e.g. key, as before)
• Both sets compared with T-test
→If (mean of) leakage distributions differ, device leaks
Properties:
• Non-specific: Works on

all intermediate states
(that differ from mean)

• Not every found leakage
might be exploitable

34

Random vs. Random
Specific T-Test

Kocher’s DPA as a Test:
• Key is known and fixed, input is random
• Measurements split in two sets according to known

intermediate state
• Both sets compared with T-test
→If (mean of) leakage distributions differ, specific
intermediate state leaks
Properties:
• Specific: Works on predicted

intermediate state
• Only finds expected leakages
• Shows an attack

35

Practical Considerations

• Test is influenced by measurement setup:
– Both sets should be randomly interleaved, to

ensure initial state is not biased

– FvR: plaintext is fixed in one set, but not other:
marks hiding countermeasures as insecure

• Semi-Fixed vs Random Test:
– Fixes partial intermediate state for semi-fixed case

– Inputs and outputs still seem random

– Avoids FvR problem above

36

Susceptibility to Common Noise

• Drifts decrease sensitivity
• Remedy: Paired T-test

𝑡𝑝 =
𝐷

𝑠𝐷
2

𝑛

, with 𝐷 = 𝑥𝑖 − 𝑦𝑖

• Common noise of paired observations vanishes
• Also works for higher order analysis with moving

averages
𝑥′ = 𝑥 − 𝜇𝑥

𝑑
→ 𝑥′ = 𝑥 − 𝜇𝑥,𝑙𝑜𝑐𝑎𝑙

𝑑

• Less susceptible to noise and easier to compute

[DCE16] Ding, Chen, Eisenbarth Simpler, Faster, and More Robust T-test Based Leakage Detection –COSADE 2016 37

Side Channel Countermeasures

38

Preventing Side Channel Attacks

Goal: Prevent inference from observable state

• Hiding: lowers signal to noise ratio

– Noise generator, randomized execution order, dual-
rail/asynchronous logic styles…

• Masking: (secret sharing) splits state into shares;
forces adversary to recombine leakage

– Boolean or arithmetic masking, Higher-order masking

• Leakage Resilience: prevents leakage aggregation
by updating secret

39

Key usage in Cryptography

Classic Method:

• Same key leaks for every
execution of crypto

• Unlimited observations per
key

Leakage Resilience (Concept):

• Key changes at each
iteration

• Only one (few) observation
per key

plaintext

ciphertext

40

Leakage Resilience: Key Update

Key needs update with every usage:

• Stateful design
– Key owner updates key before each usage

– Problem: Multiple key owners (symmetric crypto)
need to stay synchronized

• Stateless design
– Highly desirable for many symmetric applications

– First practical proposals exist, e.g. [MSJ12] and
[TS13]

41
[MSJ12] M. Medwed, F.-X. Standaert, A. Joux. Towards Super-Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs. CHES 2012
[TS13] M. Taha and P.Schaumont. Side-channel countermeasure for SHA-3 at almost-zero area overhead. HOST 2013

Stateless Key Updates

• Great leakage properties:
At most two observations per key!

• Big performance overhead: 128 Encryptions to derive key

E E

𝐾

R0
1 R1

1

𝐾0 𝐾1

E ER0
2 R1

2

𝐾00 𝐾01

E ER0
2 R1

2

𝐾10 𝐾11

GGM Construction:

• Nonce bits decide path

• 𝑅𝑖: public randomness

• One encryption per
nonce bit (128 Enc)

• Final key 𝐾𝑛𝑜𝑛𝑐𝑒used!

42

Masking:
Threshold Implementation

43

Threshold Implementation [NRR06]

Applies xor-secret sharing (Boolean masking) to thwart SCA:
1. Share inputs, states, outputs as 𝑥 = 𝑥1 + 𝑥2 +⋯, where

𝑥𝑖 ∈ 0,1 and 𝑥𝑖must be uniformly distributed
→uniformity property

2. Perform arithmetic on shares without leaking secret;
Output shares must be independent of at least one input
share
→ non-completeness property

3. The correct output is the xor-sum of the shares
→ correctness property

• Solves the glitches issue: any RTL block is independent of at
least one share

• Ensures constant means→ prevents 1st order DPA leakage

[NRR06] Nikova, Rechberger, and Rijmen: Threshold Implementations Against Side-Channel Attacks and
Glitches, ICICS 2006

44

TI: Parallel vs. Sequential

• Each 𝑓𝑖lacks one share 𝑖→ cannot leak about input

How about parallel leakage? 𝜆 = σ𝑖 𝜆𝑖
• Uniformity ensures input-independent mean:

– First order DPA prevented

– Aggregate leakage also input-independent mean
(as long as 𝜆𝑖are linearly combined (summed))

𝑓1𝑓3 𝑓2

𝑖𝑛1 𝑖𝑛2 𝑖𝑛3

𝑜1 𝑜2 𝑜3
𝜆3 𝜆2 𝜆1

45

TI: Secure XOR

Exercise:

• Given 𝑥 = 𝑥1 + 𝑥2 and y = 𝑦1 + 𝑦2, compute 𝑧 =
𝑧1 + 𝑧2 = 𝑥 + 𝑦 without breaking uniformity, non-
completeness or correctness?

𝑥1

𝑥2

𝑦2

𝑦1

𝑧1

𝑧2

Solution: 𝑧1 = 𝑥1 + 𝑦1
𝑧2 = 𝑥2 + 𝑦2

• Correctness: 𝑧 = 𝑧1 + 𝑧2 = 𝑥 + 𝑦
• Non-Completeness: 𝑖 share does

not depend on non-𝑖 shares
• Uniformity: 𝑧𝑖 is uniform if either

𝑦𝑖 or 𝑥𝑖 is uniform
46

TI: Secure AND

Exercise:

• Given sharing of 𝑥 and y, find minimum number of
shares and method to compute 𝑧 = 𝑥𝑦 without breaking
uniformity, non-completeness or correctness?

Solution: 𝑧1 = 𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1
𝑧2 = 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3
𝑧3 = 𝑥3𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦3

• Correctness:
𝑧 = 𝑧1 + 𝑧2 + 𝑧3 = 𝑥𝑦

• Completeness:
𝑖 share independent of share j ≠ 𝑖

• Uniformity: not fulfilled!!!
Uniformity needs more shares or masking variable

𝑥1, y1

𝑥2, 𝑦2

𝑥3, 𝑦3

𝑧1

𝑧2

𝑧3

47

Secure AND: Re-masking
Restoring uniformity:
• Add randomness:

e.g. 𝑟1, 𝑟2 ← 0,1 ; 𝑟3 = 𝑟1 + 𝑟2

Then: 𝑧1 = 𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1 + 𝒓𝟏
𝑧2 = 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3 + 𝒓𝟐
𝑧3 = 𝑥3𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦3 + 𝒓𝟑

→Each 𝑧𝑖 is uniformly distributed, non-complete
and correct, but additional randomness needed

• Adapt function:
𝑧 = 𝑥𝑦 + 𝑤, (w is properly shared, i.e. uniform):

Then: 𝑧1 = 𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1 +𝒘𝟏
𝑧2 = 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3 +𝒘𝟐
𝑧3 = 𝑥3𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦3 +𝒘𝟑

→Each 𝑧𝑖 is uniformly distributed, non-complete
and correct; randomness of 𝑤 re-used

𝑥1, y1

𝑥2, 𝑦2

𝑥3, 𝑦3

𝑧1

𝑧2

𝑧3

48

From 3-share to 2-share

49

𝑧 = 𝑎 ⋅ 𝑏 + 𝑐

𝑧1 = (𝑎1 ⋅ 𝑏1 + 𝑐1) + 𝑎2 ⋅ 𝑏1𝑧2 = (𝑎2 ⋅ 𝑏2 + 𝑐2) + 𝑎1 ⋅ 𝑏2

Non-linear function:

Correct;
Non-Complete;
Uniform;

Compared with 3-share:
- Less randomness
- Fewer logic operations
- Two extra flip-flops
- Two stages

Pipelining!

Leakage Detection on
2-TI Simon Implementation

50

Conclusions

• Physical access gives rise to many possible
attacks

• Protection against physical attacks is possible,
but neither easy nor cheap

– Perfect protection is not possible

– device compromise may not result in system
compromise

• IoT will ensure interest for years to come

51

52

Thank You!
vernam.wpi.edu

its.uni-luebeck.de

thomas.eisenbarth@uni-luebeck.de

