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Train Theft of MoD Laptop

Train theft of MoD laptop with fighter secrets alarmed Pentagon:

[...] a laptop was stolen containing secrets of the biggest military procurement

project ever launched [...]. It held details of progress on the development of the United States'
supersonic joint strike fighter. [...]

A petty thief stole the laptop from a British military officer at Paddington station in London last May.
It had been left on the luggage rack on a train. |[...]

The computer is believed to have passed through several hands before it was
returned to the Ministry of Defence. The thief was caught and later convicted. [...]

The Guardian, Tuesday 6 February 2001:




Solution: Hard Disk Encryption
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* Hard Disk Encryption available on all major OSs

* Enabled by default on mobile phones

* Solves Problem: Good password sufficient for secure
storage



Problem: Physical Attacks
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Cold Boot Attacks

Lunchtime Attack:

e data will persist for
minutes if chips are cooled

* Keys easily recovered from
memory content |

Physical Access is needed

Halderman; Schoen; Heninger; Clarkson; Paul;, Calandrino; Feldman,; Appelbaum; Felten: Lest We
Remember: Cold Boot Attacks on Encryption Keys, USENIX Security 2008



Implementation Attacks



Implementation Attacks

Faults

‘S JIAES
¢ ‘-ﬁ

Leakage

Execution time

Memory remanescence

Power and EM

e Critical information leaked through side channels
e Adversary can extract critical secrets (keys etc.)
e Usually require physical access (proximity)



Physical Attacks

* |nvasive Attacks
— Probing Attacks
e Semi-invasive

— Fault Injection Attacks

* Non-invasive . W,
— Timing Attacks (cf. Tuesday talk)
— Physical side channel attacks:
— Power, EM, Sound, Light



Fault Attacks

* Very powerful and not that difficult to
implement
e Approach:

— Induce faults during crypto computation
(e.g. power or clock glitch, shine laser, EM etc.)

— Use corrupt data output to recover keys
* Countermeasures:

— Strong error detection through coding or repeat
computation

— Tamper resilient hardware

* Example: single faulty output of RSA-CRT can
reveal entire RSA key [BDL97,Len96]

Faulty
output

[BDL97] Boneh, DeMillo, Lipton. "On the importance of checking cryptographic protocols for faults. CRYPTO 97 10
[Len96] Lenstra AK. Memo on RSA signature generation in the presence of faults. 1996.



Types of fault attacks

* Differential Fault Analysis [BS96]:

— Analyze difference between correct and
faulty output: knowledge about fault

position and/or value reveals (partial) key Faulty

* Simple fault analysis:

— only faulty output given; additional
statistical knowledge about fault behavior -
-

needed.

— Fault sensitivity analysis [LSG10]: only -
certain internal states can be faulted: output

faulty behavior—>that state occured

[BS96] Biham, Shamir. Differential fault analysis of secret key cryptosystems, CRYPTO 96
[LSG+10] Li, Sakiyama, Gomisawa, Fukunaga, Takahashi, and Ohta, Fault sensitivity analysis, CHES 2010



Information Leakage through Power

* Key Observation: Power Consumption of ICs
depends on processed data

* First exploited to recover cryptographic keys
from smart cards in 1999
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Power Consumption of CMOS

* Information stored as voltage levels —Hi =1/Lo=0
* Signal transitions dissipate power:

P = E('C'VZ'E‘FY'Ilea&

dyn&mic static

Activity factor a is determined by data

—> Power Consumption / EM emanation
depends on processed data!
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A Simple Power Analysis Attack

Analyze Cipher
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. Find a suited predictable

intermediate value in the
cipher

. Perform power measurements

and post processing

. Recover Secret Key



Modular Exponentiation for RSA

Basic principle: Scan exponent bits from left to right and
square/multiply operand accordingly = Exponent is secret key

Algorithm: Square-and-Multiply

Input: Exponent H, base element x, Modulus N
Output: y = x" mod N

1. Determine binary representation H = (h,, h,_,, ..., h),

2. FOR/=t-1TOO

IF h; = 1 THEN Execution of multiply

y=y*xmod N depends on secret
RETURN
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A Simple Power Analysis Attack

1. Find a suited predictable

Analyze Cipher intermediate value in the
cipher

. Perform power measurements
and post processing

== | KeyRecovery | 3. Recover Secret Key




Measurement setup

* Oscilloscope measures
power or EM from target
crypto device

* Usually PC to control setup ¥




SPA Measurement Setup

* Voltage drop over shunt resistor ~ power

O O

Vl scope




A Simple Power Analysis Attack

1. Find a suited predictable
Analyze Cipher intermediate value in the
cipher
. ii_ik Leakage 2. Perform power measurements
;38383 .
= ssaea:” | Measurement and post processing
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. Recover Secret Key




RSA Power trace

Where are the squares, where are the multiplies?
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Detecting key bits
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Differential Power Analysis

* Key idea: use statistical information from many
observations

e Recall Password Timing Example:
time = f(input, secret)

* Leakage exists, how to exploit it?
- some variations may be predicted
- variations may be tiny,

- only small parts of implementation need be
predicted

22



AES: predicted value

plaintext
b b b b & %
S
|

S' S S S S
o

Add_Key F

Sub_Bytes S
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V1

Predicted state: y; = S(x; @ key,)

Single-bit DPA: Predict only one bit of state:
h = LSB(y,)
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DPA on AES on Controller

Assumption: Controller leaks HW(y) during
S-box lookup

1. Measure P;(t)and store all {(P;(t), in;)
2. Sort traces based on h = LSB(y,) and average

o = Pi(t)|(h = 0) up = Pi(t)| (h =1)

3. Compute difference of means:

A= py — U

24



Harnrning weight

Average of 1000 HWs

1000 averaged traces

a0
value number
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Harmming weight

Sorted Traces (based on h)
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Result of the Distance of Means Attack

OPA trace

|—e—sum1-sumﬂ|
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Side Channel Attacks Classification

* Non-Profiled Attacks

— Need some knowledge of implementation and (approximate)
leakage model (or build it on the fly)

» Difference of Means (Classic DPA)
* Correlation Power Analysis (CPA)

* Mutual Information Attack (MIA)

* Collision Based Attacks

* Profiled Attacks:

— Two-step process: 1) profile leakage, 2) use learned leakage
model to extract information
— Usually more effective in exploitation due to better modeling
* Template Attack
* Linear Regression



Single-bit DPA

* Simple yet effective attack:

— Very generic leakage model: only needs slight
difference for one bit

— Many more powerful, but less generic attacks exist
* A= 0 for wrong key and wrong time points

* Reveals both correct key AND time point of
leakage ol ]
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Leakage Detection



Methods for Leakage Detection?

Goal: Simple test to detect any leakage in implementation

* Profiled vs. Non-profiled?

— MIA: strong but slow convergence; Depends strongly on
parameter choices: how to describe and sample pdfs?

— Templates: very powerful, but costly to build and also
model-dependent: Which variable to template?

— Good choices for leakage quantification
 CCA (Correlation Collision Attack)[mmE1o0]:
— Basically univariate self-profiling attack
— Already widely used as leakage detection tool
— Disadvantage: does not work for single-bit leakages

* Above proposed as attacks. More generic solution?

[MME10] Moradi, Mischke, Eisenbarth Correlation-enhanced power analysis collision attack—CHES 2010



Leakage Detection: TVLA Test [GuR11]

* Builds on T-Test: test to check matching means
for two distributions

* T-Test returns confidence for non-leakage
hypothesis

 Non-profiled, DPA derived

* Originally proposed for automated test suite

— Given cipher-specific test vectors, check
implementation correctness and ensure observed
leakage traces do not break test

e Comesintwo (three) flavors

[GJIR11] Goodwill, Jun, Jaffe, Rohatgi: “A testing methodology for side-channel resistance validation”, NIST
Workshop, 2011.



Welch’s T-Test

Checks if two normal distributions X, Y have
the same mean

With sample mean X and variance sZ, t is
givenas: t=-222_

s2 S5

Ny Ny ——( X

If X,Y have the same mean, then t follows a
student distribution and thus |[t|is small:
Pr(ltdf=v>1000| > 4‘5) < 0.00001

Hence, if no leakage exists, the probability of
|t] > 4.5 is sufficiently small




Fixed vs Random Test
Non-Specific T-Test

Two sets of measurements:
* Fixed: external variables (plaintext, key) are fixed

 Random: external variable (e.g. plaintext) is random
(others, e.g. key, as before)

* Both sets compared with T-test
—2If (mean of) leakage distributions differ, device leaks
Properties: 80

 Non-specific: Works on o
all intermediate states |
(that differ from mean) - Uil IRV

* Not every found leakage =
might be exploitable

B0

-80
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Random vs. Random
Specific T-Test

e Key is known and fixed, input is random

e Measurements split in two sets according to known
intermediate state

* Both sets compared with T-test

—2If (mean of) leakage distributions differ, specific
intermediate state leaks "

Properties:

e Specific: Works on predicted
intermediate state

* Only finds expected leakages
 Shows an attack
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Practical Considerations

* Test is influenced by measurement setup:

— Both sets should be randomly interleaved, to
ensure initial state is not biased

— FvR: plaintext is fixed in one set, but not other:
marks hiding countermeasures as insecure

* Semi-Fixed vs Random Test:
— Fixes partial intermediate state for semi-fixed case
— Inputs and outputs still seem random
— Avoids FvR problem above



Susceptibility to Common Noise

e Drifts decrease sensitivity

 Remedy:

tp:L,WithD:Xi—yi

2
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n

detection probability
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unpaired t-test (no rg)
------- paired t-test (no rg)
............. unpaired t-test (with rg)
paired t-test (with rg)

I

T
120K
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number of traces

e Common noise of paired observations vanishes
* Also works for higher order analysis with moving

averages

d
x' = (x — 1) x" = (X — e tocar )
* Less susceptible to noise and easier to compute

[DCE16] Ding, Chen, Eisenbarth Simpler, Faster, and More Robust T-test Based Leakage Detection —COSADE 2016

T
300K



Side Channel Countermeasures



Preventing Side Channel Attacks

Goal: Prevent inference from observable state
* Hiding: lowers signal to noise ratio

— Noise generator, randomized execution order, dual-
rail/asynchronous logic styles...

* Masking: (secret sharing) splits state into shares;
forces adversary to recombine leakage
— Boolean or arithmetic masking, Higher-order masking

* Leakage Resilience: prevents leakage aggregation
by updating secret



Key usage in Cryptography

Classic Method: Leakage Resilience (Concept):
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* Same key leaks for every * Key changes at each
execution of crypto iteration

* Unlimited observations per ~ * Only one (few) observation
key per key

40



Leakage Resilience: Key Update

Key needs update with every usage:

 Stateful design
— Key owner updates key before each usage

— Problem: Multiple key owners (symmetric crypto)
need to stay synchronized

* Stateless design
— Highly desirable for many symmetric applications

— First practical proposals exist, e.g. [MSJ12] and
[TS13]

[MSJ12] M. Medwed, F.-X. Standaert, A. Joux. Towards Super-Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs. CHES 2012
[TS13] M. Taha and P.Schaumont. Side-channel countermeasure for SHA-3 at almost-zero area overhead. HOST 2013



Stateless Key Updates

GGM Construction:

Nonce bits decide path 1 } |
R;: public randomness Ro § Ri

One encryption per KO Kl

nonce bit (128 Enc) 2 ;ﬁ Az RZ;ﬁ ISQR%

Final key K., ,,,c0oused! ¥ ¥ v ¥
Koo Ko1 K10 K14

Great leakage properties:
At most two observations per key!

Big performance overhead: 128 Encryptions to derive key



Masking:
Threshold Implementation



Threshold Implementation [NRR06]

Applies xor-secret sharing (Boolean masking) to thwart SCA:

1. Shareinputs, states, outputsas x = x; + x, + ---, where

x; € {0,1} and x;must be uniformly distributed
= uniformity property

2. Perform arithmetic on shares without leaking secret;

Output shares must be independent of at least one input
share

- non-completeness property

3. The correct output is the xor-sum of the shares
—=> correctness property

* Solves the glitches issue: any RTL block is independent of at
least one share

* Ensures constant means—> prevents 1t order DPA leakage

[NRRO6] Nikova, Rechberger, and Rijmen: Threshold Implementations Against Side-Channel Attacks and
Glitches, ICICS 2006



Tl: Parallel vs. Sequential

in1 \ in3
. B

o 0 A N

1113 % VTN

* Each f;lacks one share i = cannot leak about input
How about parallel leakage? 1 = };; 4;

* Uniformity ensures input-independent mean:
— First order DPA prevented

— Aggregate leakage also input-independent mean
(as long as A;are linearly combined (summed))

45



Tl: Secure XOR

Exercise:

* Givenx =x; +x, andy =y, + y,, compute z =
Z1 + z, = x + y without breaking uniformity, non-
completeness or correctness?

Solution: z; =x; + y4
Zy =Xt Y2

* Correctness: z=2,+2z, =x+Yy

* Non-Completeness: i share does
not depend on non-i shares

* Uniformity: z; is uniform if either
y; or x; is uniform

46



Tl: Secure AND

Exercise:

* Given sharing of x and y, find minimum number of
shares and method to compute z = xy without breaking
uniformity, non-completeness or correctness?

Solution: 2z
)
Z3

Z2 +  Correctness:

Z=2Z1t2Zy+ 23 =Xy
e Completeness:

Z3 i share independent of share j # i

*  Uniformity: not fulfilled!!!

Uniformity needs more shares or masking variablé

X1Y1 T X1Y2 + X2Y1
X2Y2 T X3V + X2)3
X3Y3 t X3Y1 + X1Y3

X1, Y1 Z

X2,Y2

B

X3,Y3



Secure AND: Re-masking

Restoring uniformity:
e Add randomness:

eg. 1,1, < {01} s=7+1 1 “
Then: Z1 = X1Y1 + X1y, + x4 + 14
Zy = XYy T X3V T X2Y3 + 1 X2, Y2 2
Zz = X3Y3 + X3Y1 Tt X1Y3 + 13
—>Each z; is uniformly distributed, non-complete
and correct, but additional randomness needed . 2

z = xy + w, (w is properly shared, i.e. uniform):

Then: Z1 = X1Y1 + X1y, + X271 + Wy
Zz = X2Y2 T X3Y2 + X2Y3 + W2
. = X3Y3 t X3y1 T X1Y3 + W3
—>Each z; is unlformly distributed, non-complete
and correct; randomness of w re-used

48



Non-linear function: z=a-b+c

ZZ=

From 3-share to 2-share

(az - by + ¢3)

+a1'b2

b2

a2

Z1=

(ay - by +¢1)

al

bl

+a2‘b1

Pipelining!
Correct;

Non-Complete;
Uniform;

Compared with 3-share:
- Less randomness

- Fewer logic operations
- Two extra flip-flops

- Two stages

49



Maximum t value

Leakage Detection on
2-Tl Simon Implementation
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Conclusions

* Physical access gives rise to many possible
attacks

* Protection against physical attacks is possible,
but neither easy nor cheap

— Perfect protection is not possible

— device compromise may not result in system
compromise

* |oT will ensure interest for years to come
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| . Thank You!
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