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Outline

• Why physical attacks matter

• Implementation attacks and power analysis

• Leakage Detection

• Side Channel Countermeasures
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Train Theft of MoD Laptop
Train theft of MoD laptop with fighter secrets alarmed Pentagon:
[…] a laptop was stolen containing secrets of the biggest military procurement 
project ever launched […]. It held details of progress on the development of the United States' 

supersonic joint strike fighter.  […]

A petty thief stole the laptop from a British military officer at Paddington station in London last May.

It had been left on the luggage rack on a train. […]

The computer is believed to have passed through several hands before it was 
returned to the Ministry of Defence. The thief was caught and later convicted.  […]

The Guardian, Tuesday 6 February 2001:
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Solution: Hard Disk Encryption

• Hard Disk Encryption available on all major OSs
• Enabled by default on mobile phones
• Solves Problem: Good password sufficient for secure 

storage

plaintext ciphertext

y*a@1^A:5#....

key
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Problem: Physical Attacks

Problem: your key is stored in memory (DRAM)

This happens if you cut power:
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Cold Boot Attacks

Lunchtime Attack:

• data will persist for 
minutes if chips are cooled

• Keys easily recovered from 
memory content

Physical Access is needed

Halderman; Schoen; Heninger; Clarkson; Paul; Calandrino; Feldman; Appelbaum; Felten: Lest We 
Remember: Cold Boot Attacks on Encryption Keys, USENIX Security 2008 6



Implementation Attacks



Implementation Attacks

• Critical information leaked through side channels

• Adversary can extract critical secrets (keys etc.)

• Usually require physical access (proximity)

plaintext

ciphertext

Leakage
Execution time

Memory remanescence

Power and EM

Faults
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Physical Attacks

• Invasive Attacks

– Probing Attacks

• Semi-invasive

– Fault Injection Attacks

• Non-invasive

– Timing Attacks (cf. Tuesday talk)

– Physical side channel attacks:

– Power, EM, Sound, Light
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Fault Attacks

• Very powerful and not that difficult to 
implement

• Approach: 
– Induce faults during crypto computation 

(e.g. power or clock glitch, shine laser, EM etc.)
– Use corrupt data output to recover keys

• Countermeasures:
– Strong error detection through coding or repeat 

computation
– Tamper resilient hardware

• Example: single faulty output of RSA-CRT can 
reveal entire RSA key [BDL97,Len96]

10[BDL97] Boneh, DeMillo, Lipton. "On the importance of checking cryptographic protocols for faults. CRYPTO 97
[Len96] Lenstra AK. Memo on RSA signature generation in the presence of faults. 1996.

Faulty 
output



Types of fault attacks

• Differential Fault Analysis [BS96]:
– Analyze difference between correct and 

faulty output: knowledge about fault 
position and/or value reveals (partial) key

• Simple fault analysis: 
– only faulty output given; additional 

statistical knowledge about fault behavior 
needed.

– Fault sensitivity analysis [LSG10]: only 
certain internal states can be faulted: 
faulty behavior→that state occured

11
[BS96] Biham, Shamir. Differential fault analysis of secret key cryptosystems, CRYPTO 96
[LSG+10] Li, Sakiyama, Gomisawa, Fukunaga, Takahashi, and Ohta, Fault sensitivity analysis, CHES 2010

output

Faulty 
output



Information Leakage through Power

• Key Observation: Power Consumption of ICs 
depends on processed data

• First exploited to recover cryptographic keys 
from smart cards in 1999
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Power Consumption of CMOS

• Information stored as voltage levels –Hi =1/Lo=0

• Signal transitions dissipate power:

𝑃 = 𝛼 ∙ 𝐶 ∙ 𝑉2 ∙ 𝑓
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

+ 𝑉 ∙ 𝐼𝑙𝑒𝑎𝑘
𝑠𝑡𝑎𝑡𝑖𝑐

Activity factor 𝛼 is determined by data

→ Power Consumption / EM emanation 
depends on processed data!
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A Simple Power Analysis Attack

1. Find a suited predictable 
intermediate value in the 
cipher

2. Perform power measurements 
and post processing

3. Recover Secret Key



Modular Exponentiation for RSA

Basic principle: Scan exponent bits from left to right and 
square/multiply operand accordingly

Algorithm: Square-and-Multiply

Input: Exponent H, base element x, Modulus N

Output: y = xH mod N

1. Determine binary representation H = (ht, ht-1, ..., h0)2

2. FOR i = t-1 TO 0

3. y = y2 mod N

4. IF hi = 1 THEN

5. y = y * x mod N

6. RETURN y

Execution of multiply
depends on secret

→ Exponent is secret key
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A Simple Power Analysis Attack

1. Find a suited predictable 
intermediate value in the 
cipher

2. Perform power measurements 
and post processing

3. Recover Secret Key



Measurement setup

• Oscilloscope measures 
power or EM from target 
crypto device

• Usually PC to control setup
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SPA Measurement Setup

• Voltage drop over shunt resistor ~ power

Target

shunt
scope

𝑉𝐷𝐷

𝑉𝑆𝑆

𝑽
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A Simple Power Analysis Attack

1. Find a suited predictable 
intermediate value in the 
cipher

2. Perform power measurements 
and post processing

3. Recover Secret Key



RSA Power trace

Where are the squares, where are the multiplies?
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Detecting key bits

• After zoom-in, squares and multiplies are 
easily distinguishable
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Differential Power Analysis

• Key idea: use statistical information from many 
observations

• Recall Password Timing Example:

𝑡𝑖𝑚𝑒 = 𝑓 𝑖𝑛𝑝𝑢𝑡, 𝑠𝑒𝑐𝑟𝑒𝑡

• Leakage exists, how to exploit it?

- some variations may be predicted

- variations may be tiny,

- only small parts of implementation need be 
predicted
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AES: predicted value

S S S S S S S

𝑦1

plaintext
Add_Key

Sub_Bytes

Predicted state: 𝑦1 = 𝑆(𝑥1 ⊕𝑘𝑒𝑦1)

Single-bit DPA: Predict only one bit of state:

ℎ = LSB(𝑦1)
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DPA on AES on Controller

Assumption: Controller leaks HW(𝒚𝟏) during 
S-box lookup

1. Measure 𝑃𝑖(𝑡)and store all 𝑃𝑖 𝑡 , 𝑖𝑛𝑖
2. Sort traces based on  ℎ = LSB(𝑦1) and average

𝜇0 = 𝑃𝑖(𝑡)|(ℎ = 0) 𝜇1 = 𝑃𝑖(𝑡)| (ℎ = 1)

3. Compute difference of means:

∆ = 𝝁𝟏 − 𝝁𝟎
24



Average of 1000 HWs
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Sorted Traces (based on ℎ)
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Result of the Distance of Means Attack
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Side Channel Attacks Classification

• Non-Profiled Attacks
– Need some knowledge of implementation and (approximate) 

leakage model (or build it on the fly)
• Difference of Means (Classic DPA)
• Correlation Power Analysis (CPA)
• Mutual Information Attack (MIA)
• Collision Based Attacks

• Profiled Attacks:
– Two-step process: 1) profile leakage, 2) use learned leakage 

model to extract information
– Usually more effective in exploitation due to better modeling

• Template Attack
• Linear Regression
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Single-bit DPA

• Simple yet effective attack:

– Very generic leakage model: only needs slight 
difference for one bit

– Many more powerful, but less generic attacks exist

• ∆≈ 0 for wrong key and wrong time points

• Reveals both correct key AND time point of 
leakage
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Leakage Detection
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Methods for Leakage Detection?

Goal: Simple test to detect any leakage in implementation
• Profiled vs. Non-profiled?

– MIA: strong but slow convergence; Depends strongly on 
parameter choices: how to describe and sample pdfs?

– Templates: very powerful, but costly to build and also 
model-dependent: Which variable to template?

– Good choices for leakage quantification

• CCA (Correlation Collision Attack)[MME10]:
– Basically univariate self-profiling attack
– Already widely used as leakage detection tool
– Disadvantage: does not work for single-bit leakages

• Above proposed as attacks. More generic solution?

[MME10] Moradi, Mischke, Eisenbarth Correlation-enhanced power analysis collision attack—CHES 2010
31



Leakage Detection: TVLA Test [GJJR11]

• Builds on T-Test: test to check matching means 
for two distributions

• T-Test returns confidence for non-leakage 
hypothesis

• Non-profiled, DPA derived

• Originally proposed for automated test suite
– Given cipher-specific test vectors, check 

implementation correctness and ensure observed 
leakage traces do not break test

• Comes in two (three) flavors

32[GJJR11] Goodwill,  Jun, Jaffe, Rohatgi:  “A testing methodology for side-channel resistance validation”, NIST 
Workshop, 2011. 



Welch’s T-Test

• Checks if two normal distributions 𝑋, 𝑌 have 
the same mean

• With sample mean ҧ𝑥 and variance 𝑠𝑥
2, 𝑡 is 

given as:    𝑡 = ഥ𝑥 −ഥ𝑦

𝑠𝑥
2

𝑛𝑥
+
𝑠𝑦
2

𝑛𝑦

, 

• If 𝑋, 𝑌 have the same mean, then t follows a 
student distribution and thus |𝑡|is small:
Pr(|𝑡𝑑𝑓=𝑣>1000| > 4.5) < 0.00001

• Hence, if no leakage exists, the probability of 
𝑡 > 4.5 is sufficiently small
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Fixed vs Random Test 
Non-Specific T-Test

Two sets of measurements:
• Fixed: external variables (plaintext, key) are fixed
• Random: external variable (e.g. plaintext) is random 

(others, e.g. key, as before)
• Both sets compared with T-test
→If (mean of) leakage distributions differ, device leaks
Properties:
• Non-specific: Works on 

all intermediate states 
(that differ from mean)

• Not every found leakage 
might be exploitable
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Random vs. Random
Specific T-Test

Kocher’s DPA as a Test:
• Key is known and fixed, input is random
• Measurements split in two sets according to known 

intermediate state
• Both sets compared with T-test
→If (mean of) leakage distributions differ, specific 
intermediate state leaks
Properties:
• Specific: Works on predicted 

intermediate state 
• Only finds expected leakages 
• Shows an attack
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Practical Considerations

• Test is influenced by measurement setup:
– Both sets should be randomly interleaved, to 

ensure initial state is not biased

– FvR: plaintext is fixed in one set, but not other: 
marks hiding countermeasures as insecure

• Semi-Fixed vs Random Test:
– Fixes partial intermediate state for semi-fixed case

– Inputs and outputs still seem random

– Avoids FvR problem above
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Susceptibility to Common Noise

• Drifts decrease sensitivity 
• Remedy: Paired T-test

𝑡𝑝 =
𝐷

𝑠𝐷
2

𝑛

, with 𝐷 = 𝑥𝑖 − 𝑦𝑖

• Common noise of paired observations vanishes
• Also works for higher order analysis with moving

averages
𝑥′ = 𝑥 − 𝜇𝑥

𝑑
→ 𝑥′ = 𝑥 − 𝜇𝑥,𝑙𝑜𝑐𝑎𝑙

𝑑

• Less susceptible to noise and easier to compute

[DCE16] Ding, Chen, Eisenbarth Simpler, Faster, and More Robust T-test Based Leakage Detection –COSADE 2016 37



Side Channel Countermeasures
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Preventing Side Channel Attacks

Goal: Prevent inference from observable state

• Hiding: lowers signal to noise ratio

– Noise generator, randomized execution order, dual-
rail/asynchronous logic styles…

• Masking: (secret sharing) splits state into shares; 
forces adversary to recombine leakage 

– Boolean or arithmetic masking, Higher-order masking

• Leakage Resilience: prevents leakage aggregation 
by updating secret

39



Key usage in Cryptography

Classic Method:

• Same key leaks for every 
execution of crypto

• Unlimited observations per 
key

Leakage Resilience (Concept):

• Key changes at each 
iteration

• Only one (few) observation 
per key

plaintext

ciphertext
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Leakage Resilience: Key Update

Key needs update with every usage:

• Stateful design
– Key owner updates key before each usage

– Problem: Multiple key owners (symmetric crypto) 
need to stay synchronized

• Stateless design
– Highly desirable for many symmetric applications

– First practical proposals exist, e.g. [MSJ12] and 
[TS13]

41
[MSJ12] M. Medwed, F.-X. Standaert, A. Joux. Towards Super-Exponential  Side-Channel Security with Efficient Leakage-Resilient PRFs. CHES 2012
[TS13] M. Taha and P.Schaumont. Side-channel countermeasure for SHA-3 at almost-zero area overhead. HOST 2013



Stateless Key Updates

• Great leakage properties: 
At most two observations per key!

• Big performance overhead: 128 Encryptions to derive key

E E

𝐾

R0
1 R1

1

𝐾0 𝐾1

E ER0
2 R1

2

𝐾00 𝐾01

E ER0
2 R1

2

𝐾10 𝐾11

GGM Construction:

• Nonce bits decide path

• 𝑅𝑖: public randomness

• One encryption per 
nonce bit (128 Enc)

• Final key 𝐾𝑛𝑜𝑛𝑐𝑒used! 
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Masking: 
Threshold Implementation

43



Threshold Implementation [NRR06]

Applies xor-secret sharing (Boolean masking) to thwart SCA:
1. Share inputs, states, outputs as 𝑥 = 𝑥1 + 𝑥2 +⋯, where 

𝑥𝑖 ∈ 0,1 and 𝑥𝑖must be uniformly distributed 
→uniformity property

2. Perform arithmetic on shares without leaking secret; 
Output shares must be independent of at least one input 
share 
→ non-completeness property

3. The correct output is the xor-sum of the shares
→ correctness property

• Solves the glitches issue: any RTL block is independent of at 
least one share

• Ensures constant means→ prevents 1st order DPA leakage

[NRR06] Nikova, Rechberger, and Rijmen: Threshold Implementations Against Side-Channel Attacks and 
Glitches, ICICS 2006
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TI: Parallel vs. Sequential

• Each 𝑓𝑖lacks one share 𝑖→ cannot leak about input

How about parallel leakage? 𝜆 = σ𝑖 𝜆𝑖
• Uniformity ensures input-independent mean:

– First order DPA prevented

– Aggregate leakage also input-independent mean 
(as long as 𝜆𝑖are linearly combined (summed))

𝑓1𝑓3 𝑓2

𝑖𝑛1 𝑖𝑛2 𝑖𝑛3

𝑜1 𝑜2 𝑜3
𝜆3 𝜆2 𝜆1
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TI: Secure XOR

Exercise:

• Given 𝑥 = 𝑥1 + 𝑥2 and y = 𝑦1 + 𝑦2, compute 𝑧 =
𝑧1 + 𝑧2 = 𝑥 + 𝑦 without breaking uniformity, non-
completeness or correctness?

𝑥1

𝑥2

𝑦2

𝑦1

𝑧1

𝑧2

Solution: 𝑧1 = 𝑥1 + 𝑦1
𝑧2 = 𝑥2 + 𝑦2

• Correctness: 𝑧 = 𝑧1 + 𝑧2 = 𝑥 + 𝑦
• Non-Completeness: 𝑖 share does 

not depend on non-𝑖 shares
• Uniformity: 𝑧𝑖 is uniform if either 

𝑦𝑖 or 𝑥𝑖 is uniform
46



TI: Secure AND

Exercise:

• Given sharing of 𝑥 and y,  find minimum number of 
shares and method to compute 𝑧 = 𝑥𝑦 without breaking 
uniformity, non-completeness or correctness?

Solution: 𝑧1 = 𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1
𝑧2 = 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3
𝑧3 = 𝑥3𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦3

• Correctness: 
𝑧 = 𝑧1 + 𝑧2 + 𝑧3 = 𝑥𝑦

• Completeness: 
𝑖 share independent of share j ≠ 𝑖

• Uniformity: not fulfilled!!!
Uniformity needs more shares or masking variable

𝑥1, y1

𝑥2, 𝑦2

𝑥3, 𝑦3

𝑧1

𝑧2

𝑧3
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Secure AND: Re-masking
Restoring uniformity:
• Add randomness: 

e.g. 𝑟1, 𝑟2 ← 0,1 ; 𝑟3 = 𝑟1 + 𝑟2

Then: 𝑧1 = 𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1 + 𝒓𝟏
𝑧2 = 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3 + 𝒓𝟐
𝑧3 = 𝑥3𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦3 + 𝒓𝟑

→Each 𝑧𝑖 is uniformly distributed, non-complete 
and correct, but additional randomness needed

• Adapt function: 
𝑧 = 𝑥𝑦 + 𝑤, (w is properly shared, i.e. uniform):

Then: 𝑧1 = 𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1 +𝒘𝟏
𝑧2 = 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3 +𝒘𝟐
𝑧3 = 𝑥3𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦3 +𝒘𝟑

→Each 𝑧𝑖 is uniformly distributed, non-complete 
and correct; randomness of 𝑤 re-used

𝑥1, y1

𝑥2, 𝑦2

𝑥3, 𝑦3

𝑧1

𝑧2

𝑧3

48



From 3-share to 2-share 

49

𝑧 = 𝑎 ⋅ 𝑏 + 𝑐

𝑧1 = (𝑎1 ⋅ 𝑏1 + 𝑐1) + 𝑎2 ⋅ 𝑏1𝑧2 = (𝑎2 ⋅ 𝑏2 + 𝑐2) + 𝑎1 ⋅ 𝑏2

Non-linear function:

Correct;
Non-Complete;
Uniform;

Compared with 3-share:
- Less randomness
- Fewer logic operations
- Two extra flip-flops
- Two stages

Pipelining!



Leakage Detection on 
2-TI Simon Implementation

50



Conclusions

• Physical access gives rise to many possible 
attacks

• Protection against physical attacks is possible, 
but neither easy nor cheap

– Perfect protection is not possible

– device compromise may not result in system 
compromise

• IoT will ensure interest for years to come
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Thank You!
vernam.wpi.edu

its.uni-luebeck.de

thomas.eisenbarth@uni-luebeck.de


